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Abstract 

In theoretical models of turbulent mixing it is commonly 

assumed that the molecular diffusivities of all species are equal 

or that molecular diffusion is small compared with turbulent 

diffusion and that the effect of ignoring differences in the former 

is minor. The evidence suggests, however, that there are many 

situations where this simplification is not applicable. In this work 

the differential diffusion effects of passive scalars in statistically-

stationary, isotropic turbulent flow are considered along with  a 

modification to the multiple mapping conditioning (MMC) 

mixing model to account for these effects. Starting from identical 

initial conditions, each passive scalar field becomes self –similar 

with its variance decaying exponentially in time. The decay of 

the correlation coefficient between two mixing scalars with 

different diffusivities is then investigated and the results are 

compared with observations from previous DNS data available in 

the literature. 

I. Introduction  

In recent years the development of turbulent combustion models 

has mainly focused on the correct modelling of the chemistry-

turbulence interactions. The molecular diffusivities of heat and 

mass of inert or reacting chemical species involved in turbulent 

flames are usually different, so that each scalar diffuses at a 

different rate. For example in hydrogen-air flames, which are the 

subject of many experiments, hydrogen diffuses about four times 

faster than air.  Consequently, it is important to study differential 

diffusion; the phenomenon in which different scalars with 

different molecular diffusivities evolve differently from each 

other. Despite this, most theoretical models of turbulent flames 

effectively ignore differential diffusion, by assuming the same 

molecular diffusivities of all species and of heat (the unity Lewis 

number assumption) and neglecting the effects of molecular 

diffusion compared to turbulent diffusion. These assumptions are 

attractive because they lead to great modelling simplifications but 

as discussed below there is ample experimental and numerical 

evidence that unequal molecular diffusion often influences 

species compositions. 

Drake et al. [5] reported experimentally observed differential 

diffusion in hydrogen-air flames and their measurements are 

consistent with the assumption that differential diffusion effects 

become smaller with increased turbulence at higher Reynolds 

numbers. Meier et al. [13] found quite significant differential 

diffusion effects on the temperature field for different H2/N2-air 

jet flames in the Reynolds number range between 6,200 and 

8,800.  Another experimental investigation of an H2/CO2 flame 

by Masri et al. [11] indicated that differential diffusion effects are 

still present for Re as high as 60,000 albeit with minor 

importance. A series of laser Rayleigh-scattering experiments has 

been performed by Dibble [4] to investigate the effects of 

differential molecular diffusion in turbulent non-reacting jet 

flows. A turbulent jet of a mixture of Freon and H2 exiting into 

coflowing air was studied at various Reynolds numbers. Smith et 

al. [17] observed large scale effects of differential diffusion in 

C02 diluted hydrogen flames at Re=30,000 and in another study a 

direct numerical simulation (DNS) was conducted [18] to 

examine the effect of varying Reynolds number on the 

differential diffusion of passive scalars in turbulent flow.  The 

differential diffusion of passive scalars of different molecular 

diffusivities was also studied by Yeung and Pope [20] who 

performed DNS of statistically-stationary, isotropic turbulence. 

Nilsen and Kosaly [14] reported on a DNS investigation of 

differentially diffusing reacting scalars in isotropic, decaying 

turbulence. Their results demonstrate that effects due to 

differential diffusion decrease with increasing Reynolds numbers 

and increase with increasing Damköhler numbers.   

The above studies show that differential diffusion can be 

significant, especially for hydrogen containing mixtures. 

Therefore it is important to develop scalar mixing models which 

account for differential diffusion effects. Although the dominant 

paradigm is to model all diffusivities as being equal, some such 

differential diffusion models have been suggested in the context 

of probability density function (PDF) methods by Chen and 

Chang [1], conditional moment closure (CMC) methods by 

Kronenburg and Bilger [9,10] and laminar flamelet methods by 

Pitsch and Peters [15]. In large eddy simulation (LES) the 

turbulent (or subgrid) diffusion can be of the same order as 

molecular diffusion and it becomes harder to justify the equal 

diffusivity approximation. This is particularly so for the 

increasingly well resolved LES of later years. In this light, 

McDermott and Pope [12] presented a new approach for treating 

molecular diffusion in LES-FDF (filtered density function) 

methods. The effect of differential diffusion on spatial transport 

is simulated by evolving scalar values in a way that accounts for 

effective diffusional velocities. Transport of scalars with different 

diffusion coefficients is simulated by the same set of particles, 

which is important for computational efficiency. More recently 

Richardson and Chen [16] proposed a new approach for treating 

differential diffusion in turbulent premixed flames which ensures 

realizability for pairwise-exchange mixing models in general, and 

demonstrated its application in the Interaction by Exchange with 

the Mean (IEM) model and in the Euclidean Minimum Spanning 

Tree (EMST) model. 

In principle, differential diffusion may cause differences in a) 

spatial transport and in b) joint distributions of scalars at a fixed 

location.   In this work, we focus on the second problem and 

suggest a new approach for considering the differential diffusion 

effects in PDF methods by using effective conditioning of mixing 

(i.e. MMC). As differential diffusion occurs at the molecular 

scale, accurate modelling of such phenomena in statistical 

methods is a challenging task. In order to minimise the effect of 



spatial transport and examine one-point joint characteristics with 

maximal accuracy, we consider differential diffusion of 

unreactive passive scalars in statistically-stationary, isotropic 

turbulent flow. We demonstrate the ability of the MMC mixing to 

account for refined properties of differential diffusion (such a 

loss of correlation between the scalars). Our modelling results are 

compared to the DNS performed by Yeung and Pope [20].  

The remainder of this paper is organized as follows. A brief 

overview of the MMC mixing model and the suggested 

modification for considering the effects of differential diffusion 

are presented in Sec. II. Results including correlation coefficients 

and decay of variances and covariances are presented in Sec. III. 

In Sec. IV conclusions are drawn. 

II. MMC mixing model and suggested modifications for 
differential diffusion 

The MMC approach was originally suggested by Klimenko and 

Pope [6] as an effective combination of CMC, which is used for 

evaluation of reactive scalars, and generalised mapping closure 

(MC), which is used for consistent modelling of the conditional 

dissipation and PDFs of the conditioning variables. The MMC 

approach allows for a stochastic implementation that converts 

this model into a full PDF model with CMC-like properties. In 

stochastic form MMC fulfils the role of a mixing model which 

enforces localness within a reduced manifold consisting of 

reference variables that are related to the physical quantities in 

turbulent combustion. In the MMC mixing model mixing 

particles interact directly with each other, similarly to Curl’s 

model [3], but the particle pairs are selected specifically to 

enforce localness in the reference space rather than randomly as 

is the case with inferior, non-local mixing models. The specific 

details of the particle pair selection and the associated model for 

mixing time scale are discussed by Cleary and Klimenko [2]. 

This implementation was originally developed for the equal 

diffusivity condition.  The MMC mixing model can be modified 

to account for differential diffusivity as discussed in the next 

paragraph. 

Consider two passive scalars YІ and YII in an homogeneous, 

isotropic turbulent field each having a different molecular 

diffusivity denoted by DI and DII respectively. As mixing 

proceeds, the ensembles mean scalar variances 
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Where Ιχ and ΙΙχ  are the scalar dissipation rates. The most 

important joint statistic is the covariance, ΙΙΙYY , which evolves 

as 
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Where ΙΙΙ,χ denotes the joint dissipation. The cross-correlation 

Coefficient ΙΙΙ ,ρ  between the two scalars is defined as: 
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For two scalars with identical initial values and equal diffusivities 

the scalars would remain identical valued, and thus fully 

correlated, at all times. However, since the diffusivities are not 

equal the scalars become progressively displaced and statistically 

decorrelated from each other. The manner in which the 

decorrelation process occurs provides fundamental information 

on the basic mechanisms of differential diffusion. 

 

In MMC (as in other PDF methods) the turbulent scalar fields, 

whose mean and covariance evolves according to “equation 1” 

through “equation 3”, are modelled using an ensemble of Pope 

particles (notional particles which possess scalar quantities 

subject to a mixing operation).  In the absence of spatial 

advection and diffusion, the scalars YI and YII evolve according 

to the mixing operation  
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The mixing model in “equation 5” is a particle interaction model. 

Particles are mixed in pairs and the acute symbol indicates new 

values, ∗
ΙΙΙ,Ŷ is the average of scalar values prior to mixing and  α 

is the mixing extent which is a random number that is 

independent of the particle scalar values ,α = 1 corresponds to 

complete mixing while α = 0  corresponds to no mixing at all. 

Defining β=1-α , γ=1-β2  and  ∆t the duration of the mixing step, 

“equation 6” indicates a link between the mean value of γ and the 

unconditional dissipation time of the flow, Dτ ,which is defined 

as the average value of scalar variances over the dissipation rate 

[8]: 
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The mixing operation ideally satisfies a number of principles [19] 

the most important of these in the current context being decay of 

variance consistent with “equation 1” and “equation 2” to a 

Gaussian distribution (in homogeneous turbulence), linearity and 

independence of mixing, and localness in composition space. 

Traditional mixing models such as Curl’s model [3] satisfy 

linearity and independence and can approximate decay to a 

Gaussian but violate the localness requirement leading to 

significant over prediction of conditional fluctuations of reactive 

scalars in jet flames [2]. High quality mixing models like MMC, 

on the other hand, satisfy all of these principles. The principle of 

localness is enforced in MMC through use of reference variables 

which are modelled to emulate the major statistics of scalar fields 

but are mathematically independent of them. The particle mixing 

pairs are selected so that the pair is in close proximity in the 

reference space. Here we introduce two reference variables, ZI 

and ZII, which are modelled by independent Ornstein-Uhlenbeck 

(OU) processes. These are stationary, Gaussian and Markovian 

diffusion process [6]. (Note that other types of reference 

variables including Lagrangian quantities from DNS or LES are 

possible [2].) The stochastic differential equation for Z*(t) (the 

value of ZΙ and ZΙΙ are MMC reference quantities also carried by 

the Pope particles) has the following form:  
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Where W(t) is a Weiner process (random walk) and τI  and τII are 

selected so that the statistics of Z*(t) match (as much as possible) 

the statistics of real turbulence. Thus we have two time scale 

ratios: 
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For the scalar YI mixing is localised in an extended space given 

by (ZΙ, µZΙΙ), while for scalar YII mixing is localised in an 

extended space given by (µZΙ, ZΙΙ). µ is a weighting factor that is 

required to control the rate of decorrelation of the differentially 

diffusing scalars. Its value is typically small. In previous MMC 

modelling, where the equal diffusivity approximation has been 

made, the reference space has been the same for all scalars. This 

new idea of using different reference spaces, with different 

characteristic diffusion times, allows the differential diffusivity 

of YI and YII to be modelled implicitly by the mixing model. The 

benefit of this approach (particularly for practical inhomogeneous 

flows) is that a single set of Pope particles can be used to model 

differentially diffusing scalars.  

In non-local mixing models, like Curl’s model, the decay of 

scalar variances is strongly determined by the mixing time scale 

τD in “equation 6”. In MMC, on the other hand, the localisation 

of mixing in the reference space directly links the dissipation of 

the variances of scalars YI and YII to the dissipation of the 

variances of reference variables ZI and ZII. The latter are 

controlled by the parameters r1 and r2 while τD has a much 

reduced level of influence and controls only the so called minor 

fluctuations of Y with respect to Z. In the present work we set an 

equal α for both YI and YII. 

The model has three independent parameters: r1, r2  and µ. The 

first two are selected to give the correct rate of decay of 2

IY     

and 2

IIY . µ is selected to ensure the correct rate of decorrelation 

of the differentially diffusing scalars. For µ = 0 the cross-

correlation coefficient, 
ΙΙΙ,ρ , approaches zero very quickly, 

whereas for µ = 1  , 1, =ΙΙΙρ   and YΙ and YΙΙ remain perfectly 

correlated and do not differentially diffuse. The selection of the 

three parameters is demonstrated in the next section. 

 

III. Results  

The modified MMC model is applied to the case of differential 

diffusion of two passive scalars in statistically-stationary 

isotropic turbulent flow. The modelling is performed using 

10,000 Pope particles which are initialised by YI* = YII* and ZI* 

= ZII*. Results are compared to the DNS performed by Yeung 

and Pope [20]. 

“Figure 1” shows 2

ΙY  and 2

ΙΙY  versus time. As can be seen 

the dissipation of scalar fluctuations by mixing occurs at different 

rates for two scalars due to their different diffusivities. The 

results show exponential decay of the variances in time, 

represented by approximately straight lines of constant slopes on 

the linear-log plot. A reasonable match between the MMC 

predicted decay rate and the DNS data is obtained by setting the 

time scale ratios r1 = 8 and r2 = 1.3. The figure also includes the 

MMC predicted covariance
ΙΙΙYY .  

 
Figure 1.Scalar variances and covariance versus time. 

The evolution of the particle scalar values YI
* and YII

* over time 

is illustrated in “figure 2 “showing a scatter plot of YI
* versus 

YII
* at approximately 16 eddy turn-over times. The two scalars 

are initially equal (red line with slope of unity) but due to 

differential diffusivity the two scalars slowly decorrelate (green 

line with slope less than unity). 

 
Figure 2.Particle scatter plot of YI

* versus YII
* at 5 eddy turn-over 

times. 

 

 



Figure 3.Correlation coefficient versus time 
 

The decorrelation of the differentially diffusing scalars is now 

evaluated quantitatively. “Figure 3” shows the correlation 

coefficient versus time. MMC predictions are shown for three 

different values of µ. As expected µ = 1 results in full 

correlation at all times (this is equivalent equal species 

diffusivity). It is evident that µ = 0 leads to too rapid 

decorrelatoin within about 10 eddy turn-over times whereas 

the true time to decorrelation is an order of magnitude greater. 

The relatively good match between the MMC and DNS is 

obtained by setting µ = 0.04. 

 
IV. Conclusions 

A modified form of the MMC mixing model is developed to 

account for the effects of differential diffusion. The new model is 

examined for the case of differential diffusion of two passive 

scalars in statistically stationary, isotropic turbulent flow in 

comparison with the DNS results of Yeung and Pope [20]. 

Specifically, we demonstrate the ability of the model to predict 

the different rates of decay of the scalar variances and at the same 

time also being able to control and emulate their rate of 

decorrelation.  While the purpose of this paper is to demonstrate 

principal feasibility of consistent emulation of variance decay 

and decorreletion due to differential diffusion within the 

flamework of PDF methods, the future work will investigate 

dependence of modelling parameters on Le and Re  and focus on 

giving practical recommendations for modelling of differential 

diffusion.  
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